Euler's partition theorem and the combinatorics of l-sequences

نویسندگان

  • Carla D. Savage
  • Ae Ja Yee
چکیده

Euler’s partition theorem says that the number of ways to partition an integer into odd parts is the same as the number of ways to partition it into distinct parts. We show how the combinatorics of “l-sequences” gives rise not only to a generalization of Euler’s theorem (discovered by Bousquet-Melou and Eriksson in 1997), but also to a generalization of Sylvester’s bijective proof. This is joint work with Ae Ja Yee.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler's Partition Theorem

Euler’s Partition Theorem states that the number of partitions with only distinct parts is equal to the number of partitions with only odd parts. The combinatorial proof follows John Harrison’s pre-existing HOL Light formalization [1]. To understand the rough idea of the proof, I read the lecture notes of the MIT course 18.312 on Algebraic Combinatorics [2] by Gregg Musiker. This theorem is the...

متن کامل

Generalizing the combinatorics of binomial coefficients via l-nomials

An l-sequence is defined by an = lan−1 − an−2, with initial conditions a0 = 0, a1 = 1. These l-sequences play a remarkable role in partition theory, allowing l-generalizations of the Lecture Hall Theorem [7, 8] and Euler’s Partition Theorem [8, 26]. These special properties are not shared with other sequences, such as the Fibonacci sequence, defined by second-order linear recurrences. The l-seq...

متن کامل

ar X iv : m at h / 05 10 05 4 v 2 [ m at h . H O ] 1 7 A ug 2 00 6 EULER AND THE PENTAGONAL NUMBER THEOREM

In this paper we give the history of Leonhard Euler's work on the pentagonal number theorem, and his applications of the pentagonal number theorem to the divisor function, partition function and divergent series. We have attempted to give an exhaustive review of all of Euler's correspondence and publications about the pentagonal number theorem and his applications of it. Comprehensus: In hoc di...

متن کامل

Euler's Partition Theorem with Upper Bounds on Multiplicities

We show that the number of partitions of n with alternating sum k such that the multiplicity of each part is bounded by 2m + 1 equals the number of partitions of n with k odd parts such that the multiplicity of each even part is bounded by m. The first proof relies on two formulas with two parameters that are related to the four-parameter formulas of Boulet. We also give a combinatorial proof o...

متن کامل

Euler’s partition theorem and the combinatorics of `-sequences

Euler’s partition theorem states that the number of partitions of an integer N into odd parts is equal to the number of partitions of N in which the ratio of successive parts is greater than 1. It was shown by Bousquet-Mélou and Eriksson in [9] that a similar result holds when “odd parts” is replaced by “parts that are sums of successive terms of an `-sequence” and the ratio “1” is replaced by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2008